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The paper presents a linear analytical model to predict the frequency characteristics 
of the discrete oscillations of the jet-edge feedback cycle. The jet is idealized as 
having top-hat profile with vortex-sheet shear layers, and the nozzle from which i t  
issues is represented by a parallel plate duct. At a stand-off distance h, a flat plate 
is inserted along the centreline of the jet, and a sinuous instability wave with real 
frequency w is assumed to be created in the vicinity of the nozzle and to propagate 
towards the splitter plate. Its interaction with the splitter plate produces an 
irrotational feedback field which, near the nozzle exit, is a periodic transverse flow 
producing singularities a t  the nozzle lips. Vortex shedding is assumed to occur, 
alleviating the singularities and allowing a trailing-edge Kutta condition to be 
satisfied ; this Kutta condition is claimed to be the phase-locking criterion. The shed 
vorticity develops into a sinuous spatial instability, and the cycle of events is 
repeated periodically. 

Problems corresponding to the various physical processes described are analysed, 
for inviscid flow with vortex-sheet shear layers and aligned flat-plate boundaries, and 
solved in an appropriate asymptotic sense by Wiener-Hopf methods. Calculation of 
the phase changes occurring in the constituents of the cycle gives an equation for the 
frequency w in the Nth ‘stage’ as a function of jet width 2b, jet velocity U,, stand- 
off distance h, and stage label N :  

wb/U,  = (b/h)g[4n(N-$)] t .  

The variations with b,  U,, h and N are in excellent agreement with edge-tone 
experiments ; the principal disagreement lies in the overall numerical factor (47~); and 
explanations are given for this. Possible effects associated with the inclusion of 
displacement thickness fluctuations in thc splitter-plate boundary layers, and the 
enforcement of a leading-edge Kutta condition, are also considered and shown not to 
affect the frequencies of the operating stages. 
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1. Introduction 
Scientific study of the generation of discrete frequency hydrodynamic fluctuations 

and associated acoustic tones in shear-layer flows coupled to solid boundaries with 
sharp edges has now gone on for well over a century. Flows of this kind are essential 
components of many engineering devices, and of several wind instruments, and are 
often inadvertently introduced into other configurations and devices. Discrete tones 
are frequently associated with undesirable effects, such as very high near-field 
pressures inducing structural fatigue, or intense far-field pressures with considerable 
annoyance value. Understanding of these flows is therefore an important problem, 
whose solution may lead to avoidance or mitigation of high near- or far-field 
pressures in engineering applications, and to the design of improved musical 
instruments. 

Theoretical study of elements of these flows has also gone on for more than a 
century, since the first studies by Helmholtz and Rayleigh of the instability of vortex 
sheets and plane jets. The full problem is one of great complexity, involving the 
interaction between vortical and acoustic modes at  large bounding surfaces with 
sharp leading and trailing edges, the vortical modes themselves being spatial 
instabilities of a non-uniform flow which suffer strong amplification and nonlinear 
roll-up into concentrations of vorticity. Progress has, accordingly, involved a 
considerable amount of empirical input, and all models so far proposed can be 
criticized for the gaps which they leave between those individual elements of discrete 
tone flows which do permit rational analytical study. 

This paper offers a start on a systematic and rational analysis of all the processes 
occurring in perhaps the best-known such flow - the so-called j e t  edge-tone. Here, 
discrete tones, in the flow itself and in the acoustic field, are produced when a wedge 
is placed in an essentially two-dimensional jet issuing from a nozzle of high aspect 
ratio. Tbe idealized model to be studied here is sketched in figure 1, where the wedge 
is contracted down to a semi-infinite flat plate aligned with the flow. Actual 
experiments have used a wide range of wedge angles, and indeed qualitatively similar 
effects are produced when a bluff cylinder is placed across the flow, so that this 
particular aspect of the model in figure 1 ought to be adequate to reveal the main 
features. Actual experiments also involve a very wide range of upstream geometries ; 
many different aspect ratios have been used, while in some experiments the jet issues 
from a slit in a large plane wall, in others a nozzle, sometimes with a long parallel 
section, sometimes with only a rapid contraction section, is used. We have taken the 
jet to be formed by two semi-infinite parallel plates, because this is the only 
configuration for which an exact calculation can be made of the interaction of an 
unsteady crossflow with the jet and nozzle, and of the continuous shedding of 
vorticity from the nozzle edge. This modelling is unexceptionable, and as 
representative of a typical nozzle as any other. 

The jet itself is taken as a top-hat jet with uniform flow between two vortex-sheet 
shear layers. This permits analytical investigation of the jet coupling to the nozzle 
and the jet interaction with the downstream splitter plate, processes which cannot 
be easily analysed with a more ‘realistic’ profile (although Goldstein 1981 has 
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FIQURE 1. Schematic of the edge-tone model configuration studied in the paper: -, vortex-sheet 
boundaries of the jet; ---. , displacement thickness fluctuations on the splitter-plate boundary 
layers ; -, rigid walls aligned with the mean flow; duct walls and splitter plate. The jet h'k width 
2b, uniform velocity U,, and the stand-off distance is A. With respect to the OXY frame, polar 
coordinates are given by X = -R cos 8, Y = R sin 8. 

extracted considerable detail for more general smooth profiles for the splitter-plate 
problem, while leaving open the question of how to deal with the nozzle interaction). 
Most experiments have not involved anything like a top-hat profile, and indeed 
many investigators have gone to some pains to assure themselves that their jet 
emerged from the nozzle with a fully developed parabolic profile. That seems, 
however, to be an inessential precaution, and recent studies of both low- and high- 
speed jets with uniform top-hat profiles (at exit, at  least) by Krothapalli & Horne 
(1984) have shown all the features seen with parabolic profiles. In fact they have 
shown more, in the sense that while it is generally believed (on the basis of parabolic 
profile experiments) that the edge-tone system oscillates with at most one discrete 
frequency for specified values of the geometrical and flow parameters, the results for 
top-hat profiles clearly show the coexistence of several discrete tones, even in the low- 
speed case. 

Certain general features are common to most discrete-tone flows. For extensive 
discussions of these and for much further background, the reader is referred to the 
reviews by Rockwell & Naudascher (1979) and Blake & Powell (1986), while the edge- 
tone itself is the focus of the review by Karamcheti et al. (1969). The role of the edge- 
tone type of configuration and mechanism in the sounding of wind instruments is 
discussed in the review by Fletcher (1979). In terms specifically of the edge-tone, and 
of features associated with the hydrodynamics rather than the acoustics, the 
observations may be summarized as follows : 

(i) oscillations of the jet system take place in a set of stages, Stage I, 11, etc., in 
each of which the (radian) frequency w varies with duct width 2b, exit flow velocity 
U, and stand-off distance h in a definite way which is only very weakly dependent on 
Reynolds number ; 

(ii) in a given stage, w increases linearly with U,,, and decreases with h as some 
power between - 1 and -:; 

(iii) there is a minimum speed, for given h, below which no tones are generated, 
and a minimum stand-off distance for given U,, ; 

(iv) in some cases there is hysteresis, the stages overlapping and the jump from 
one stage to another occurring at different values (of h, say) depending on whether 
h is increasing or decreasing, while in others there is no hysteresis, while in yet others 
several tones of comparable amplitude are present simultaneously. 

Features of the acoustic field - such as its directivity - are neither so clear nor so 
widely accepted, and will not be discussed in the present paper. 
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FIQURE 2. Schematic of the variation, in a typical experiment, of the observed frequency w of 
discrete tone oscillation with stand-off distance h (U,, h fixed) and with velocity U, (h, b fixed). In 
the diagram, though not always in an experiment, a single tone is present at  any condition provided 
U, > U,,,(h) and h > hmi,,(U0); and there is hysteretic jumping between the stages of oscillation. 

Our aim is to  provide a linear theory to account for features (i) and (ii) (illustrated 
schematically in figure 2) - and in particular to provide a clear-cut criterion for the 
phase-locking which determines the existence of possible stages of periodic 
oscillation. The theory amounts to a quantification of an idea first made explicit by 
Powell (1961), and only in part quantified by others. The idea is that any discrete- 
tone flow constitutes a ‘feedback cycle’. A disturbance originating at the nozzle exit 
frees itself from the influence of the nozzle and then propagates freely - as a 
developing wave-like instability on the jet - eventually rolling up into a ‘street ’ of 
coherent vortices, until it interacts with the splitter plate or wedge. Here it generates 
an irrotational field which is ‘fed back ’ (instantaneously, in incompressible flow) to 
the vicinity of the nozzle where it forces the release of a later disturbance at  precisely 
the right phase to sustain the cycle. The semi-infinite plate and the wedge have 
qualitatively identical properties as far as the feedback field is concerned. They each 
cause a ‘mode conversion’ a t  the edge, an incident sinuous mode (with boundary 
condition 4 = 0 on the jet centreline) being converted into a varicose mode (with 
hard-wall boundary condition a$/an = 0) on each of the two streams into which the 
jet divides. The discrete mode conversion is smoothed out by the generation of an 
irrotational field, and i t  is this that is the feedback field, significant at large distances 
upstream. 

If one could trace the (complex) efficiencies or eflectivenesses qj  (Powell 1961) with 
which these processes are carried out in the complete feedback loop, their product 
would have to come to unity, 

(1.1) A = nqj = 1, 
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or 1Al = 1,  argA = ~ N K ,  so that the amplitude gain is zero (decibels), while the phase 
change is an integer multiple of 2 ~ .  We shall derive a ‘dispersion relation ’ of precisely 
the form (l . l) ,  from which we shall claim the frequency stages to be given by the 
(real) roots for w of the phase content of ( 1 .  l ) ,  

arg A = ~ N K .  (1.2) 
Such real w do not allow the amplitude condition simultaneously to be satisfied, nor 
should we expect this to be possible. We assert - and will try to demonstrate, in 
extensions of this study to include several nonlinear effects - that a nonlinear theory 
would allow the complete (1.1) to be satisfied with real o close to those obtained from 
the linear phase relation (1.2); nonlinear effects have a large influence on the 
amplitudes (in particular on the spatial amplification of instability waves in the jet) 
but a much smaller influence on both the local transverse structure of those 
instabilities and on their dispersion characteristics (in particular the variation of 
wavelength with frequency and the jet velocity and width). A great deal of evidence 
has now been accumulated from studies of large-scale coherent structures in 
turbulent shear flows to substantiate this claim ; see, for example, Strange & Crighton 
(1983), Gaster, Kit & Wygnanski (1985), Cohen & Wygnanski (1987a, b ) ,  where 
linear theory is shown to work extremely well except with regard to instability 
growth (for which standard linear theory is also shown to be greatly improved by 
incorporation of linear mean-flow divergence effects). In particular, linear theory is 
shown in these papers to provide a very accurate prediction of transverse mode shape 
and phase characteristics, even for quite strongly nonlinear disturbances, though the 
mode shapes and phases are sensitive to detail of the mean velocity profile. 

An alternative attitude towards our approach is the following. We wish to 
calculate frequencies from a phase-locking condition 

Z arg r3 = wn, (1.3) 
I 

and we argue on the basis of the experimental evidence that the phase changes 
arg 7, can be calculated approximately from linear theory. It is simply convenient to 
calculate the complete relation (1.1) from linear theory, and then to select the desired 
phase content (1.3). 

A linear theory would not be expected to answer questions of hysteretic behaviour 
- on which in any case there are conflicting claims in the literature, nor could it give 
the amplitude of the sound field. It might, however, be expected to give the 
directivity of the sound field, and some scaling laws, but that is not an issue we take 
up in this paper, because the matching of the incompressible field determined in this 
paper to an outer acoustic field turns out to be surprisingly complicated. Accordingly, 
we defer consideration of nonlinear hydrodynamic effects, and of the acoustic field in 
linear theory, to later papers, and concentrate here on the possible stages of periodic 
motion. A crucial point in the analysis is the phase-locking condition, and we propose 
here that this condition involves satisfaction of a Kutta condition a t  the (trailing) 
edges of the nozzle. Crighton (1985) gives a review of the status of the Kutta 
condition in a range of unsteady flows, and at leading and trailing edges and points 
of separation on smooth bodies. It can be confidently assumed that the condition 
holds at the trailing edges (in the sense that all velocities predicted by inviscid theory 
must be finite at  those edges) in the ranges of frequency, fluctuation amplitude and 
Reynolds number appropriate to normal laboratory edge-tone operation. A vorticity- 
shedding criterion has actually recently been used in acoustic feedback resonance 
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problems studied numerically by Hourigan et al. (1990) and Stoneman et al. (1988). 
The authors state explicitly that ‘the shedding.. . does not involve the Kutta 
condition’, as the bodies concerned are smooth, but there is nevertheless a shedding 
at  a definite rate which would correspond mathematically to that dictated by a 
Kutta condition if the zero-thickness-sharp-edge limit were taken. 

Applicability of a Kutta condition a t  the leading edge of the splitter plate is not, 
however, on such a firm footing, and for most of the paper we accept the usual 
inverse-square-root velocity singularity there. Section 9 then attempts to  model 
displacement thickness fluctuations in the boundary layers over the splitter plate 
(Howe 1981 a, b,  c)  and to determine their amplitude so as to impose the leading-edge 
Kutta condition. It is found that this imposition makes no difference a t  all to the 
function in (1.2), and hence the stage frequencies remain unchanged, but the acoustic 
field is significantly changed, in a way to be described in a future paper on the 
acoustics of the edge-tone. 

Our approach differs from that of previous workers in the following respects: 
(i) i t  consistently calculates all phase changes from the exact solution of linear 

problems from the same model without ad hoc assumptions or approximations ; 
(ii) i t  claims the Kutta condition as the phase-locking criterion. 
Other workers have calculated contributions to  the net phase change from various 

different models. Karamcheti et al. (1969) calculated the phase changes for the 
amplifying instability wave on the jet, using a parabolic form for the velocity profile 
and including the effects of slow divergence of the mean profile with downstream 
distance. Interaction of such a jet with either the nozzle walls or the splitter plate is 
not easily handled, however, nor was it. Curle (1953) and Holger, Wilson & Beavers 
(1977) represented the jet instead by an array of concentrated vortices, which allows 
detailed treatment, by conformal mapping, of the passage of the vortices past a 
wedge (of non-zero angle, if required) downstream. But such a representation does 
not correctly model the behaviour near the jet exit, where the vortices are far from 
fully formed (see figure 3),  and where correct modelling of the flow is essential for 
application of the Kutta condition ; and it does not take into account the unstable 
growth of perturbations in the jet which is essential to offset the algebraically 
decaying feedback field from the downstream body. 

While acknowledging the importance of each of the contributions mentioned to 
improved understanding of particular elements of the cycle, we believe that the 
model sketched in figure 1 and analysed in this paper is the first to put all the 
necessary features together consistcntly . 

The organization of this paper is as follows. An exact formulation is given in $2 of 
the boundary-value problem corresponding to figure 1, and it is argued that it is 
appropriate to seek a solution under the asymptotic limit b 4 A, 4 h, where A, is the 
wavelength of the jet instability. This permits the problem to be dccoupled into a 
series of analytically tractable problems, and corresponds to the physical picture 
which is always in mind when one describes the edge-tone (and other flows) in 
feedback cycle terms. It means that the jet is not closely coupled simultaneously to 
upstream and downstream boundaries, but rather that essentially different physical 
processes occur in different regions of space. We consider in $3 how a freely 
amplifying spatial instability mode of the sinuous kind interacts with the splitter 
plate - the exponential amplification implying that the nozzle can be regarded as at 
‘minus infinity’. As part of the downstream interaction, we calculate ($4) the 
irrotational algebraically decaying field which, near the nozzle, looks like a transverse 
oscillatory streaming, and in 95 how the jet responds to this cross-stream forcing. In  
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FIQURE 3. A typical edge-tone experiment, with visualization by dye injection (from Staubli & 
Rockwell 1987, by kind permission of the authors). Note that in this experiment the shear layers 
of the jet remain continuous upstream of the splitter plate, as in the modelling of this paper. In 
other circumstances (e.g. when the splitter plate oscillates transversely, as also studied by Staubli 
6 Rockwell 1987) the jet shear layers may break up into vortex-street concentrations before 
reaching the splitter-plate edge. 

order to comply with the Kutta condition, we have ($6) to add an eigensolution for 
the nozzle-jet interaction problem which allows the release of vorticity into the flow 
- and as this vorticity becomes decoupled from the nozzle, it is recognized as the 
sinuous instability mode with which the calculation began. Identifying it as such 
leads to the dispersion relation (1 . l ) ,  of which we select the phase content (1.2). This 
is analysed in $8, $7 having given an approach to the asymptotic factorization of 
Wiener-Hopf kernels which we believe may be of general usefulness and which here 
enables the analytical approach to be followed right through, despite the presence of 
apparently hopelessly intractable Wiener-Hopf kernels. All the general features of 
the edge-tone are seen to be reproduced by the analytical predictions, and indeed the 
only discrepancies lie in purely numerical factors which are in part related to 
differences between the model and typical experiments in respect of nozzle and wedge 
geometry, and in part to the fact, explained in $8, that low-frequency asymptotics 
for spatially unstable modes give accurate results only at  very low frequencies, 
whereas the corresponding ones for the (generally irrelevant) temporally unstable 
modes have a much wider range of validity. 

Possible effects arising from the introduction of displacement thickness fluctu- 
ations in the boundary layers over the splitter plate, and the application of a 
Kutta condition at  the leading edge of that plate, are discussed in $9. The paper ends 
with a brief discussion of other aspects calling for comment and further study. 

2. Formulation 
We start by writing down the exact form of the boundary-value problem for 

incompressible flow. A two-dimensional problem will be considered, with flow in the 
(2, y)-plane. A parallel plate duct {y = kb, - 00 < x: < 0} carries uniform inviscid 
incompressible flow at speed 17,. The flow emerges from the duct to form vortex 
sheets whose mean locations are {y = I b ,  0 < x: < a}, and the top-hat jet thus 
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formed is assumed to spontaneously develop a sinuous mode of spatial instability a t  
a real frequency w ,  the time-dependent fields having the factor exp (-iwt) which will 
be suppressed throughout. A rigid splitter plate is placed symmetrically in the flow, 
at a stand-off distance h, occupying {y = 0 , h  < x < m} (see figure 1). 

We wish to solve the linear boundary-value problem for time-harmonic 
perturbations, posed by Laplace’s equation for the potentials in the fluid, with rigid 
wall conditions on the duct plates and on the splitter plate, and with vortex-sheet 
conditions of the continuity of pressure and of particle displacement on the 
continuations of the duct walls. As explained in $ 1 ,  a Kutta condition will be imposed 
at  the edges { x  = 0, y = f b} of the duct walls, but it will not be possible to impose a 
similar condition at the leading edge of the splitter plate (unless displacement 
thickness fluctuations on the splitter plate are accounted for; see $9). 

Denote the potentials, for the unsteady flow, in the regions y > b,  - b < y < + b, 
y < -b ,  by u, v,  w, respectively, and let [(x), ~ ( x )  denote the displacements (of course 
with exp ( - iwt) understood) of the vortex sheets from their mean positions y = f b. 
Then the full boundary-value problem is defined by 

(2.1) V ( u ,  v, w) = 0, 

aw av _ -  _ - -  - 0  (y=-b,-CO < x < O ) ,  
ay ay 

-iwu = (-iw+U,;)v (y = + b , O  < x < a), 

-iww = ( -iw+U,&)v (y = - b , O  < x < 00) 

((2.4) expressing continuity of pressure across 

/ 

the vortex sheets), and 

(y = + b , O  < x < C O ) ,  

(2.5) I (y = -b,O < x < 00) 

(which express continuity of particle displacement). The Kutta condition requires 
IV(u, v) I = O( 1) as the edge (0, + b )  is approached, and IV(w, v) 1 = O( 1) near (0, - b ) .  

We must allow exponential growth downstream of the splitter plate edge, and 
must also tolerate singularities in pressure and in velocity Vv of the inverse square- 
root kind at  the splitter-plate edge. The issue of causality will be discussed briefly in 
5 10. 

There is no general method for solving problems of the above kind (essentially 
three-part boundary-value problems with different conditions in - 00 < x < 0,O < 
x < h and h < x < C O ) ,  though it is possible that a development of the ingenious 
technique of Mohring (1978) might lead to an exact solution. Mohring did in fact 
apply this method to a three-part problem involving a duct and splitter plate, and 
Durbin (1984) extended the calculation to demonstrate existence of discrete 
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frequency oscillations, but the edge-tone problem appears to be significantly more 
complicated, involving, as it does, two vortex sheets rather than the single sheet in 
the problems so far discussed by Mohring. We have so far been unable to make the 
necessary extension and instead will tackle the problem asymptotically. In  the first 
place, the stand-off distance h may be taken as large, the ratio h/2b being normally 
greater than about 5 and often as high as 30. Second, the Strouhal number St = 
f 2b/U, = ob/?rU,, is invariably low, being perhaps as small as 0.05 and never larger 
than 0.5. Correspondingly, the wavelength A, of the hydrodynamic instability waves 
on the jet is larger than the duct width 2b (between 1.5 and 6 times the duct width, 
say), but considerably less than the stand-off distance h. We shall therefore seek an 
asymptotic solution under the restrictions 

b Q A, 6 h, (2 .6)  

and the way in which these inequalities are used will be evident in the subsequent 
analyses. 

We continue in $3  with examination of the two-part problem in which an incident 
instability wave interacts with the splitter plate, the (distant) upstream duct being 
ignored. This standard two-part problem can be solved by the Wiener-Hopf method, 
in which the restriction b << A, (equivalent to St + O )  allows a relatively simple 
Wiener-Hopf factorization to be achieved. As part of the solution we obtain in $4 the 
field ‘fed back’ to large distances upstream. This field then features in $5 as the 
forcing for another two-part problem, in which we examine the jet interaction with 
the duct, ignoring the downstream splitter plate. A suitable eigensolution has to be 
included in the solution of this duct exit problem in order that a Kutta condition can 
be satisfied when the jet is forced by the feedback signal. Part of this eigensolution 
is a spatial instability wave, and we complete the cycle in $6 by identifying that wave 
with the incident instability wave of $3 .  This is a linear problem with no external 
forcing, and therefore in the identification an arbitrary amplitude factor cancels out, 
leaving us with the dispersion equation of the form (1.1). From this, as argued in $1, 
only the phase content (1.3) will be regarded as significant, and will be used to 
calculate the possible frequencies of operation. 

3. The splitter-plate problem 
Far downstream of the splitter edge, in y > 0,  

u = A exp ( - iaz- y, y ) ,  w = B exp ( --ax) cosh y, y, (3 .1)  

are appropriate potentials, where y, = (a2)$ with Re yo > 0. Applying the vortex- 
sheet conditions of (2 .4)  and (2.5) at y = b gives the relation 

A / B  = D, exp (y, b )  cosh y, b, (3 .2)  

where D, = 1 +aU,/o, provided a satisfies the dispersion relation for a varicose 
(symmetric, breathing) mode, 

l+DXcothy,b = 0. (3-3) 

v = Cexp(-im)coshy,y, w = Dexp(-im+y,y), (3 .4)  

In  y < 0 we have similarly, as x + + ao, 

where D / C  has the same value as provided by (3.2) for A/B,  and where again a 
satisfies (3.3). As regards (3.3), this has - at any rate in the low-Strouhal-number 
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limit of interest here - a zero at a = -a1 +ia,, where al, a2 > 0, and also one a t  a*, 
these corresponding, respectively, to spatially amplifying and decaying modes. 
Approximate forms for al, a2 will be given in $ 7 ; for the moment no specific forms are 
needed. 

The relation between the coefficients B and C ,  giving the pressure jump across the 
plate, will be determined in a moment, and then (3.2) determines A ,  and similarly, 
D. To find this relation, we consider the splitter-plate problem in the absence of the 
(far upstream) duct, writing x = X +  h, and expressing the total potentials for the 
semi-infinite splitter plate as 

utot  =Aexp(-iicrX-y,y)+u(X,y) ( y >  b ) ,  (3.5) 
with similar expressions for the other potentials as sums of the primary fields just 
discussed, and which must dominate as X + + co , plus correction potentials q5,1c. and 
w in the regions 0 < y < b,  - b < y < 0, y < - 6 ,  respectively. These correction 
functions are all harmonic, and satisfy aq5/ay = a$/ay = 0 on the splitter plate 
{y = 0,O < X < co}. On the upstream continuation of the splitter plate, the fields and 
all their derivatives must be continuous, so that 

for {y = 0, - 00 < X < O } .  On {y = f b ,  - co < X < + co} the vortex-sheet conditions 
of $2 must be satisfied, and they must be satisfied by the correction functions because 
they are already satisfied by the primary fields with coefficients (A,  B,  C, D ) .  

The problem posed above is essentially a standard two-part boundary-value 
problem which can be solved exactly by the Wiener-Hopf technique. Before giving 
the solution, we express the correction fields (u, 4, q?, w) as the sum of parts even in 
y and odd in y. Then we observe that the even part has zero y-derivative on {y = 0, 
- co < X < + a}, and it is therefore an eigenmode for the doubly infinite jet problem 
with even symmetry about y = 0, and as such is already included in the primary 
fields in (3.5) - which form the general such eigenmode which is finite asX+ - a. We 
can therefore proceed on the assumption that the correction fields are odd functions 
of y (though not necessarily continuous across y = 0 ) ,  but we do not yet assume that 
the primary fields are odd in y. 

Define transforms by 

U(k ,  y) = SI," u(X, y) eikX dx, 

etc., and U,(k ,  y) for the transforms of u(X, y ) N (  fX). Then Laplace's equation is 
satisfied by 

} (3.7) 
U(k,  y) = U(k)e-Y', 

@(k, y) = P(k)  coshyy+&(k)sinhyy, 

in which y = y, = ksgn Re k, these solutions also being odd in y and finite as Iy( +. co. 
Application of the vortex-sheet boundary conditions (for all X) followed by 
elimination of U ( k )  gives 

P(k)  (D, cosh yb + 0;' sinh yb) + &(k) (D, sinh yb +D;' cosh yb) = 0, (3.8) 

in which D, = 1 + kU,/w. 
This equation is essentially the Wiener-Hopf equation required, for that equation 

might be expected to  relate the pressure drop across the plate, proportional to  

W ( k ,  y) = -U(k)eYy, 
Y(k, y)  = --P(k)coshyy+&(k)sinhyy, 
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D+(k,O) = @+(k,O)- Y+(k, 0) ,  to the velocity W-(k,O) on the upstream extension of 
the plate, and we readily find 

i(B - C) 
2P(k) = D+(k,  0) +- 

k - a  ’ 

&(k) = y-l@l_(k,  0) 

(the prime indicating a/ay), so that (3.8) gives 

i(B - C) 
k - a  

D + ( k , 0 ) + ( 2 b ) H ( k )  @l_(k,O)+- = 0. 

The kernel of this functional equation is 

coth y b  1 + D i  tanh y b  
1 +Di coth y b  ‘ 

H ( k )  = ~ 

yb 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Formal solution of the Wiener-Hopf problem is standard (at any rate for real w - 
we comment in $10 on complex w and the causality issue). As k+& o o , H ( k )  - Ikl-l, 
so that we can define a factorization 

H ( k )  = H + ( 4  H - ( k ) ,  (3.13) 

in which H , ( k )  are analytic and non-zero in upper and lower half-planes which may 
(with the implicit inclusion of small dissipation, such that yr + (k2  + e2)i) be taken to 
overlap in a strip of finite width and include the real k-axis. The factors H , ( k )  are 
each O(k-i)  as Ikl+ co in appropriate half-planes. Explicit forms for these factors will 
be given in $7 ; for the moment we continue formally. Then the usual arguments lead 
to solutions of (3.11) in the forms 

(3.14) 

for any entire function E(k) .  If the potential behaves like Xi near the plate edge (a 
leading edge) and the velocities like X-4, it follows that W-(k, 0) - k-i,D+(k, 0) - k-i 
at infinity, and hence from Liouville’s theorem that 

E ( k )  = 0. (3.15) 

This choice of E(k)  gives the least singwlar solution, while (3.14) of course gives the 
general solution bounded upstream, regardless of the causality question. The least 
singular solution has pressure and velocity singularities of the X-4 kind familiar in 
leading-edge flows, and these cannot be relieved within the present model. A 
singularity of this kind was removed in one of the alternatives studied by Goldstein 
(1981); there, however, an externally imposed forcing field (a gust or acoustic wave) 
induced a singularity, and this could then be removed by the addition of a suitable 
multiple of the eigensolution under study here. Howe (1981a, b ,  c) was able to 
remove the same singularity, but in the absence of any external forcing, by invoking 
displacement thickness fluctuations in the boundary layer on the splitter plate. The 
boundary condition 

a$lay  = a$/ay = o on o < x < 00, 
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is replaced by his approach by 

a$/ay = = Vexp (iKX), (3.16) 

with K the wavenumber of a Tollmien-Schlichting wave at  frequency w ,  and the 
constant V can be determined to remove the X-i velocity and pressure singularity. 
We shall examine the consequences of introducing (3.16) later in this paper, in $9. 
For the present we have no displacement thickness fluctuations and no external 
forcing, and the leading-edge singularity therefore stays. 

From (3.14) and (3.15) we find 

i(B-C) D, H+(k) eyb 
U(k) = ~ - - 

2 k-aH+(a) (coshyb)[l+Ditanhyb]’ 

a form suitable for use in the inversion integral 

I r+W 

U ( x ,  y) = J U(k) exp ( -  ikX - yy) dk, 
27T -m 

(3.17) 

(3.18) 

when X < 0, showing that the poles in the upper half-plane are at k = a, and at the 
sinuous mode instability wavenumber k = /I, where 

l+Djtanhygb = 0. (3.19) 

For X > 0 the appropriate form is 

(3.20) 
i(B-C) D, 1 cosech yb eyb 

U(k) = - - 
2 k-aH-(k)H+(a) yb l+D;cothyb’ 

and the only pole in the lower half-plane is at k = a*, corresponding to the decaying 
varicose mode. 

Consider X < 0 and, without loss of generality, examine the residue fields from the 
poles a t  k = a and k = /I on y = b only. The real axis integration path in (3.18) may 
then be deformed over the poles a t  k = a, k = p onto the edges of a vertical branch 
cut from k = O +  to k = ico. The residue at  k = a gives a contribution to u(X, b) equal 
to 

- !j(B - C) D, cosh y, b exp ( - i d ) ,  

to which we have to add the primary-mode contribution in (3.5) to obtain a total a- 
mode 

u,(X, b) = [A exp ( - y, b) - +(B - C) D, cosh y, b] e-’OX. (3.21) 

Now we argue that since, as will be shown in $7, the a-mode grows more slowly a t  
low frequencies than the sinuous B-mode, it follows that as X + - 00 the field will be 
dominated by the a-mode (3.21) - whereas what we intend to study is the incidence 
on the splitter plate of a sinuous mode and its conversion, as X+ + 00 ,  into a varicose 
mode. The coefficient in square brackets in (3.21) must therefore vanish, and because 
of relation (3.2) it then follows at  once that 

B = -C, A = -D, (3.22) 

and so that, if the incident instability is to be purely sinuous, the total potential field 
must be odd in y. 

This is true in X > 0, of course, and shows that the emergent a-mode (3.1) is not 
a varicose mode for the whole jet ( -  b < y < + b) ; rather, there is a varicose mode 
on each half-jet ( -  b < y < 0,O < y < + b ) ,  as demanded by the hard-wall condition 
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on y = 0, but the two varicose modes are n out of phase to comply with (3.22) and 
as is suggested by the vorticity concentrations of figure 3. 

Having removed the a-mode in this way, we are left (apart from the branch-line 
integral) with the residue from the sinuous mode pole at  k = ,3, 

(3.23) 

Thus if we are given the amplitude (i.e. the coefficient of exp ( -ipX)) of an incident 
/?-mode, equations (3.23) and (3.2) determine the amplitude factor A of the a-mode 
which ultimately emerges far downstream from the edge because the solution in (3.5) 
for utot contains, in addition to that emergent a-mode, only an exponentially 
decaying residue field from the pole at  k = a* and an algebraically decaying field 
from the branch-line integral. 

4. The upstream feedback field 

splitter plate is, according to (3.17) and (3.18), 
I n X  < 0 and Y = y - b  > 0, the appropriate form of the potential scattered by the 

D, H+(k) exp (iklXl- yY) dk 
(cosh yb) [l +Di tanh yb] ' (4.1) 

and the exponential factor is eikZ in Re k > 0, and eikZ* in Re k < 0, where Z = 
1x1 + iY, 1x1 = R cos 8 , 0  < 8 < in. The real axis integration path may be deformed 
onto the edges of a vertical cut from 0, with k = iv, 0 < v < 00, on the right of the cut. 
Residue contributions will be ignored in the following, which concentrates on the 
algebraically decaying field represented by the branch-line integral. This field is 

. (4.2) 

For the e-vZ term, rotate the path of the v-integration clockwise through 8, putting 
w = gePie, 0 < 6 < co, and giving a contribution to u, of 

1 1 
d<exp[-i8-@] 

(coshkb)(l+Ditanhkb) ' 
B "  

-2x J0 

with the contents of the square brackets evaluated at k = ice-'*. 
This integral may be evaluated asymptotically, as R + co , by expanding the terms 

in the square brackets asymptotically for 6+ 0 and integrating term by term. All the 
terms can be trivially expanded, save for H+(k). It will appear later, when we come 
to the Wiener-Hopf factorization, that we can set H+(k) = k;fJ+(k), where the cut for 
k$ lies in the lower half-plane, and where J+(O) is finite. Then we at once have the 
above contribution in the asymptotic form 

Similar treatment of the exp (-VZ *) term in (4.2) gives a contribution 

B J+(O) 1 
27C1aebi H+(a) z*i' - -- 
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and thus 

In particular, for finite values of Y and large values of 1x1, 
(4.4) 

and therefore, in the vicinity of the exit of the distant upstream duct, the ‘upstream 
feedback field ’ takes, approximately, the form of a periodic uniform streaming flow 
normal to the mean flow direction, 

A similar analysis can be conducted for the upstream feedback component 9, of 
the field within the jet, - b  < y < + b ,  and the same result is, naturally, found, 
namely 4, - Gy. The field u, = $, = Gy does, of course, satisfy Laplace’s equation 
and the necessary conditions on the vortex-sheet jet boundaries y = f b.  It does not, 
however, satisfy the hard-wall conditions on the duct boundaries, and the next step 
is to consider the motion in the vicinity of the duct exit to determine the correction 
to (urn, 4,) which will enable those conditions to be satisfied - while at  the same time 
retaining satisfaction of the conditions on the vortex sheets. The far downstream 
splitter plate has served to determine the forcing fields (urn,$,), and no further 
account will be taken of the presence of the splitter plate. 

5. Jet response to feedback forcing 

vtot, and write, for the analysis of the jet exit behaviour, 
Consider the region y > b with potential utot, the region 0 < y < b with potential 

Utot = Gy + u, vtot = Gy + 4, (5.1) 

where G will be taken eventually to be given by (4.7). Hard-wall conditions prevail 
for y = b,  - co < x < 0, vortex-sheet conditions for y = b,  0 < x < co, and the splitter 
plate is ignored. The problem for the perturbation potentials is therefore defined by 

v(;) = 0, 

au a$ - _ -  - = - G  on { y = b ,  -a < x < O } ,  
ay ay 

(5.3) 

$ = 0 on y = 0, all x, (5.4) 

Now the lack of decay of the forcing term ( -G) in (5.3) makes it impossible to solve 
the problem as posed. Difficulties of this kind are familiar in half-plane problems 
involving Laplace’s equations (see, for example, Noble 1958, pp. 139-140; Orszag & 
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Crow 1970) and they may be circumvented in a number of ways. The correct way is 
t o  recognize that the potential Gy is only a local approximation, the more accurate 
form (4.4) or (4.5) decaying as x+- 00. 

We shall shortly carry out the calculation for a uniformly valid approximation to 
the feedback forcing field. First, however, we modify (5.3) slightly, in a way that 
leads to a well-posed problem and in a way that permits rapid generalization to deal 
with the uniform approximation to the forcing. 

We propose to replace (5.3) by 

where E is real and positive. This retains the physical character of the upstream 
forcing near the duct exit, and cuts off the forcing over a large upstream length s-l 
with no phase change, this conveniently representing a variety of effects of which it 
may not be feasible to take full account. The value of s (small) does not enter into 
the relations for the feedback cycle frequencies provided 8 is taken as real ; thus all 
phase changes are associated with the vortical parts of the cycle only -the instability 
interaction with the splitter plate and the vortex shedding from the duct exit - and 
not with the incompressible irrotational upstream feedback. Analysis using a 
uniformly valid representation of the upstream feedback field does in fact lead 
precisely to the same results as (5.6), with an appropriate real s, as we shall see later, 
in $7.  

With the replacement of (5.3) by (5.6), it is straightforward to come to the 
Wiener-Hopf equation 

in which I q ( k ,  b )  = lom eikz$ (x, b )  dz, 

K ( k )  = D, @-(k ,  b )  - UJk, b )  + i - #o, 
‘0 w J 

#o is the finite value of #(O,  b ) ,  and 

Y =- Y K(k) = 
l+D:tanhyb M(k)’ (5.9) 

the kernel here involving only the dispersion function appropriate to the sinuous 
mode, as would be expected from the nature of the forcing. In  terms of a factorization 

K(k) = K+(k)K-(k), 

with K,(k) = O(k-i) at infinity, the solution of (5.7) with the minimal level of 
singularity is 

iGK+ (k) 
(k - is) K+(is) * 

U’(k, b)  = (5.10) 

This is composed of a contribution 

iG 
k-is 

K ( k ,  b )  = - 
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associated with the feedback forcing, and a contribution 

l7+(k, b)  = -&( k-lc 1 -%), (5.11) 

which is O(k-;) a t  infinity in the upper half-plane. The corresponding value of au/ay 
is then O(ri) ,  where r is the distance to the duct edge (0, b), and (5 .5~)  then shows that 
aq5/ay is singular, like O(r-i). This velocity singularity in the moving jet fluid will be 
eliminated in a moment. For the present, we note that the part of U(k,  b) which leads 
to a singularity is 

iG K+(k) 
K+(ie) k * 

-- (5.12) 

Now return t o  (5.1) and replace the local cross-stream forcing potential by an exact 

Utot = Urn + U ,  vtot = v m  +v ,  vtot = va, +Y, (5.13) 

where the forcing fields (urn, wm,  yrn) satisfy the vortex-sheet conditions at y = + b for 
all x, and refers to the deflection from y = + b of that vortex sheet. Then (5.3) is 
modified accordingly, but a Wiener-Hopf equation 

l7+( k, b )  + iwZ-(k) = K (  k) F-( k) (5.14) 

can be derived as before, in which U+(k, b ) ,  F-(k) and K(k) are as defined in (5.8) and 
(5.9), and the forcing function replacing iG/(k-iE) in (5.7) is iwZ-(k), where 

(or uniformly valid asymptotic) expression. Thus we write 

Z-(k) = yrn(x) eikz dx. 

However, we have, from (4.2), an expression for u,(X,Y) from which ym can be 
calculated, and we find that 

L 

for -00 < x < 0, where 

- iwy, = lr G(Y) ecx dg (5.15) 

{( 1 + D i  tanh kb)-’+ (1  -Di  tanh kb)-l} , 

Ik-iC 

(5.16) 
Observe that as h+ 00, 

(5.17) 

uniformly in 1x1. For 1x1 << h this gives a constant value for yo3 which agrees with that 
which follows from (4.6) and (4.7). It is the form of (5.15) which is particularly 
convenient, however. All we have to do is to replace G in the result (5.11) by G(C), 
E by g and carry out som dc, and then the effects of forcing by the upstream feedback 
field will be fully accounted for. The integral for 5 can be carried out asymptotically 
as h+ 00. We do this when the dispersion equation has been derived, and in the 
meantime we continue with the simple expression (5.11). 

The singular solution obtained in this way is the only possible solution which is 
bounded as x+ + 00 (and therefore possesses a Fourier transform). To alleviate the 



The j e t  edge-tone feedback cycle 377 

singularity we have to find a solution unbounded as x+ + GO. Following Orszag & 
Crow (1979) and Crighton (1972), we do this by extracting the unbounded part of the 
solution, and this must necessarily take the form of a sinuous freely developing 
instability 8-mode (the a-mode can be excluded, as it could not lead to a field capable 
of cancelling the antisymmetric singularities at  y = & b, z = 0). Write the total 
potentials (leaving aside the feedback forcing altogether, and considering only the 
spontaneous development of a sinuous instability on the jet as it emerges from the 
duct) in the forms 

(5.18) 

where AJB, = Dgey+Qb sinh ya b and 1 + D j  tanh ya b = 0 (5.19) 

(cf. (3.2) and (3.3) for the varicose a-mode). The first terms in (5.18) act as forcing 
for another Wiener-Hopf problem, for which the functional equation is 

utot = A,exp (-i/?z- ya y)+u,  vtot = B,exp (-iPz) sinh yFy+q5, 

(5.20) 

with the definitions of (5.8) and (5.9). The minimally singular solution of (5.20) is 

i ys A e-Y+Q { K+( k ) }  
V+(k ,  b )  = 1-- 

k - P  K+(P) ' 
(5.21) 

and the part of this leading to singular velocities in the jet fluid at the duct edges is, 
as in (5.12), 

(5.22) 

For the moment, this completes the study of the duct-exit problem, though we 
shall return to the solutions given here later, for discussion of the phase changes 
occurring in various parts of the feedback cycle. 

6. The Kutta condition and the dispersion relation 
We now add a suitable 'eigensolution ' (5.18) to the forced solution (5.1) driven by 

the upstream feedback, choosing the constant A, so that the complete solution has 
finite velocities in the neighbourhood of each of the edges (5 = 0,y = fb) .  This 
requires, from (5.12) and (5.22), that 

This relation, arising from the satisfaction of a Kutta condition (Crighton 1985) at 
each of the duct trailing edges, is, in turn, just the dispersion relation for the 
operating stages of the edge-tone, for 

A , exp ( - iph) exp { - i/?X - yay} 

is the potential outside the jet of the sinuous P-mode, whose interaction with the 
splitter plate was examined in $3, and (3.23) gives another expression for this 
potential, from which we have 
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When this value of A ,  and (4.7) for G are inserted into (6.1), the arbitrary amplitude 
factor cancels, and we have 

The properties of this dispersion relation will be discussed in $8, where appropriate 
simplifications will be made. These depend, of course, on details of the various 
factorizations which will be obtained in the next section. It might have been 
expected that such details would be relegated to an Appendix, rather than the 
argument allowed to be interrupted by what may be thought to be issues of 
mathematical technique only. We believe, however, that these details should be 
included here in the main text, as they illuminate the physics, and are obtained by 
what we consider to be a novel approach, giving a significant improvement over 
existing techniques and of wide applicability in the analysis of unsteady fluid 
mechanics problems. 

7. Wiener-Hopf factorizations by matched asymptotic expansions 
The Wiener-Hopf kernels occurring in this problem are extremely complicated, 

and the exact Cauchy integral expressions for the factorizations are not useful 
(though they could be computed - perhaps after some preliminary contour 
deformation - for any particular case of interest). It is therefore natural to turn to 
the question of approximate factorization, for which at  present there seem to be two 
established techniques. 

The first, due to Carrier and Koiter (see Noble 1958, p. 160), advocates the 
replacement of a complicated kernel by one which approximates it reasonably on the 
real k-axis (though not necessarily elsewhere in the k-plane) and which can be readily 
factorized. As the simplest example, exp ( - k2) is not immediately factorizable, but 
we might hope that it can be sufficiently well approximated by (k2 + 1)-l on the real 
axis, in which case the multiplicative split into factors (k&i)-l, analytic and non-zero 
in overlapping upper and lower half-planes, is immediate. The disagreement between 
exp ( -  k2) and (k2 + l)-l off the real axis is irrelevant, because the Cauchy integrals 
defining the split functions involve only values of the kernel on the real axis. The 
principal argument against the Carrier-Koiter method is that no criterion - other 
than of pragmatism or aesthetics - is used to decide when a function can be 
adequately approximated by another for this purpose. 

In the second method, due to Kranzer & Radlow (1962, 1965), one exploits the 
presence of a small parameter, S ,  say, and seeks approximations to the factors 
K ,  (k, S) which are asymptotic to the exact factors as S + 0. This procedure, although 
established rigorously for certain classes of kernel K(k ,  S), is of extremely limited 
applicability. Suffice it to say here that the kernel is required to contain S in the 
explicit form K ( k ,  S) = Ko(k)  +SK,(k) and that the asymptotic factorizations 
K ,  (k, 8) are valid only for O( 1) values of k, and not for the large values of k from 
which edge behaviour can be ascertained (as in $5 here, for example). The small 
parameter which we use here as the basis for asymptotics is the frequency parameter 
wb/Uo = S ,  but our kernels do not contain S in the simple explicit manner of Kranzer 
& Radlow, nor can they be uniformly so approximated. 

We propose here to achieve the factorization by the use of matched asymptotic 
expansions (MAE). There are several slightly different ways in which MAE can be 
used here, and the most convenient is really to use MAE as the criterion for 
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replacement of a complicated kernel by a simpler one, as in the Carrier-Koiter 
method. We shall approximate our kernels uniformly, as S + 0, over the whole of the 
real k-axis, with a sequence of overlapping approximations, from which we can form 
a uniformly valid multiplicative composite kernel. Most of the terms in this 
multiplicative composite can be factorized at sight, and we need Cauchy integrals (or 
equivalent) for only one term - and there we are faced with a purely numerical 
problem from which all &dependence has been scaled out, and which in any case we 
are able to solve completely in analytical form. 

The kernel H ( k )  of (3.12) is 

H ( k )  = K ( k ) M ( k ) / N ( k ) ,  

with L ( k )  = (cothyb)/yb, 

M ( k )  = 1 +Di  tanhyb, 

N(k)  = 1 +I); cothyb, 

and y = k for Re k > 0,  y = - k for Re k < 0.  We define the obvious dimensionless 
wavenumbers 

with S = wb/U, Q 1. Then 

u = kb, 7 = k U , / o  = u/S, (7-4) 

coth (a2)$ coth CT L =  =- 
(CT2) t  CT 

(where we write (u2)i for u or - u according as Re u 2 0). 
For M ( k ) ,  take u = O(1) and let S+O. Then 

U2 

8 2  
tanh (a2)+ - - tanh (u'):. 

(7.5) 

This approximation to M in fact has 1u) overlap with the corresponding approximation 
obtained by holding 7 = O( 1) in M and letting 8 + 0. It turns out that it is necessary 
to introduce the new scaled wavenumber q according to 

u = Sfq, (7.7) 

and then 

as 8 + O , q  = O(1). Evidently (7.6) and (7.8) do overlap, as u+O and q+m, 
respectively, with common value q2(q2)t, while (7.8) is evidently good down to q = 0 
and makes the introduction of 7 unnecessary. A multiplicative composite 
approximation to M then follows as 

valid for all real wavenumbers. 

and 7 = 0(1 )  overlap and cover the whole real wavenumber range. In  terms of CT, 

For N( k ) ,  the scaled wavenumber q is redundant and approximations for c = O( 1) 

(7.10) 

while in terms of 7 ,  N = 1 + (1 + 7)' coth S ( T ~ ) ~ ,  
13 FLM 234 
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which can be approximated by 

except near 7 = - 1. One finds that 

(1  + 7)2/S( 7 2 ) ;  

1 
N(7)  - - { S + ( 1 + 7 ) 2 )  

S(72)f 
(7.11) 

is uniformly good for 7 = 0 ( 1 ) ,  including 7 close to - 1 and, further, that (7.10) and 
(7.11) overlap as u+O and ~ + m ,  with common value (u2);R2. Thus the 
multiplicative composite approximation to N(  k) is 

u coth cr 
{ S + ( 1 + 7 ) 2 } .  

(U2)t 
“k) - (7 .12)  

From (7 .5 ,  (7.9) and (7.12) we thus come to the uniformly valid approximate 
description of H ( k ) ,  on the real axis, as S+O, 

t anhu  1 2 2 1  1 
H ( k )  - -- 1(1+q  (q  ) z ) S + ( 1 + 7 ) P .  

u ( (T2)g 
(7.13) 

Approximations to the instability wavenumbers follow a t  once. For the varicose 
mode the function N ( k )  is relevant, and we have 

01 - (w/u,) ( -  1 + i&), (7.14) 

while for the sinuous mode M ( k )  is relevant, and 

p - ( ~ / ~ , , ) ~ - : ( - i + i + d 3 ) .  (7.15) 

Observe, as was claimed in $3, that the varicose mode grows much more slowly, as 
S + 0, than the sinuous. 

Factorization of much of (7.13) is now immediate. We have (e.g. Noble 1958, p. 41) 

(7.16) 

in which the indicated factors are analytic and non-zero in I m u  > -in, Imu < +in 
respectively, and are each O ( d )  as 1u1+ co therein. Second, 

with branch cuts from f i0 to T ico, respectively. Third 

8 + ( 1 + 7)’ = (7 + 1 + if$) (7 + 1 - i8;), 

(7.17) 

(7.18) 

the factors corresponding to decaying and amplifying varicose instability modes, 
respectively. 

The factorization of 
R(q) = 1 + q 2 ( q 2 $  

is more complicated. For the moment let q be real, so that (a2); = IqI. Then taking 
logarithms and differentiating gives (if R(q) = R+(q) R-(q)) 

-1n d R+(q) +-In d R-(q) = 6 3q5 - 3q2 6. sgn 
dq dq q - 1  4 - 1  

(7.19) 
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Define the zeros 

q1 = -q4 = 1 ;  q2 = - q  - ebi; q3 = -qs  = eti .  5 -  

Then 

381 

(7.20) 

where ail = 6q;. Now introduce the additive decomposition of IqI, 

IQI = &+(q)+&-(q), &+(a) =$I+++% iq &-(d = &-,1.-P, iq (7.22) 

where each of In* 1 = 1 and the cut for In+ goes from 0 to -im, that for In- from 0 
to +ice. Observe that with these definitions, &+(a) = &-(-a). Then the right-hand 
side of (7.21) may be additively decomposed in the familiar manner, after which 
integration and exponentiation give 

(7.23) 

There is a corresponding expression for R-(q); if one wishes to have the property 
R+( -9) = R-(q), then A+ must be chosen as exp (-#xi), but it is otherwise arbitrary. 

We find from this that R+(q) is finite as q --f 0 ; in fact, since 

(Gradshteyn & Ryzhik 1980, p. 532), we have 

(7.24) 

and the next term can also be calculated and provides 

2i 
R+(q)-  1--q as q + O .  

d3 

We also need the value of R+(q) at the value q = egi corresponding to the sinuous 
instability mode of wavenumber /3 given in (7.15). For this we need the values of 

Of these, I ,  is an integral along a ray, and we put q = t eh' and get 

the integral has half the value of one quoted before (7.24), so that 

I 3 = e-giinz. 
13-2 
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For Il  we deform the path from the ray through ehi onto one round the unit circle 
to 1, then from 1 to + 00. This gives 

For I,, deform the path onto a segment of the unit circle from e@ to e@ and then a 
ray from ehi to  00. This gives 

Taking the appropriate linear combination of I,, I ,  and I,, and performing 
elementary manipulations, the integrals involving @/sin 0 cancel (they can in fact be 
evaluated in terms of Clausen's function CZz) and the final result is 

R+(ehi) = 46eh' .  (7.25) 

Finally, in order to check the edge behaviour, we need the asymptotics of R+(q) as 
q+ co. We readily find, directly from (7.23), 

(7.26) 

It can then be checked that the solution obtained in $3 has the usual inverse square- 
root velocity and pressure singularity that one expects a t  a leading edge, while, when 
the Kutta condition is imposed a t  the duct exit edges, the solution of $6 has finite 
velocities and pressures, the shear layers leaving the duct lips with zero gradient at 
all times. 

We end this section by setting down the results which are needed for simplification 
of the dispersion relation : 

H'(P) - SbSfe-h', H + ( P )  - -46et i i ,  H+(a)  - - 1 / ( 2 5 ) ,  (7.27c-e) 

and we assume in the result for K+(ie) that  E 4 IPI, i.e. that  the artificial cutoff length 
E - ~  greatly exceeds the largest relevant lengthscale 1PI-l in the duct exit problem. 
These results in fact lead to a precise identification of E .  In  the dispersion relation E 

enters through the first term of (6.l), while it was proved in $ 5  that the correct result 
following from a uniformly accurate expression for the upstream feedback field is 
obtained by writing gfor E and carrying out som dc with G(c) given by (5.16). Therefore 
E is defined bv 

1 1  
J+(O) - bpi, K+(is) - @eFi, K+(P) - (6b)-%!~e~jF', (7.27f-h) 

or 

where the right-hand side is estimated for h + co by applying Watson's lemma to the 
integral, and the left-hand side uses (7 .279) .  When (7 .27)  are used again, together 
with (4 .7 )  for G, we find 

X 
E = -  

4h' 
(7 .28)  
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All the required conditions are satisfied by this choice of E ,  and its use is fully 
equivalent to use of the uniformly valid forcing field (5.15)-(5.16) which, however, 
does not make clear the essential nature of that field near the duct exit - an 
oscillatory transverse streaming - in the way clearly revealed by the simpler (4.6). 

8. The frequencies of the operating stages 

(6.1) it  is found, on reduction, that 
When the asymptotic formulae (7.27) and (7.28) are used in the dispersion relation 

2n(h/b) Sexp{ -id3 (h /b)  Sg+ ini-+i(h/b) Sg} = 1, (8- 1) 
a relation of precisely the form postulated by Powell (1961). Imagine a disturbance 
released from the duct exit to comply with the Kutta condition there. It grows 
exponentially in space and its phase varies linearly with x as it propagates 
downstream, and its amplification and phase change over distance 2 are represented 
by an ‘effectiveness ’ factor corresponding to the terms in Si in curly brackets of (8.1). 
The disturbance does not, however, immediately take the form of a freely 
propagating sinuous instability ; there is a virtual origin for this instability which 
was, in effect, calculated in the duct exit problem in $5,  and contributes to the in phase 
in (8.1). This virtual origin may also be referred to as corresponding to an ‘end- 
correction ’, as in the classical problem of wave reflection from an open-ended pipe 
(see, e.g., Noble 1958, p. 138). Next, the disturbance interacts with the splitter plate, 
changing its wavenumber from p to a as analysed in $3 and generating, with a certain 
effectiveness factor, an upstream feedback field ($4), again with a virtual origin 
which contributes to in in (8.1). Apart from this virtual-origin effect, the upstream 
feedback involves no spatial phase change, as it involves a purely irrotational motion 
with algebraic decay in space, leading to the algebraic factor 2nh/b in (8.1). The 
feedback field then perturbs the jet at the duct exit with a certain effectiveness, and 
this, through the Kutta condition, provokes the release of a subsequent disturbance 
an integral number of periods later in the phase-locked feedback cycle. Evidently the 
product of the ‘effectiveness factors’ round the feedback loop must come to unity, 
and this is precisely what (8.1) expresses. Our contribution has been to provide 
analytical expressions, from low-frequency linear theory, for the Powell effectiveness 
factors and for the virtual-origin effects. 

The phase content of (8.1) will be adopted, as explained in $1, and gives 

wb/U, = (b/h)i[4n(N-#)] i  

for N = 1,2,3, . . . , showing that for given values of U,, b, h, w may have any one of 
a countable series of values which give different stages of operation. In  a given stage, 
w varies linearly with U,, increases with b as bi, and decreases as h-2 as h increases. 
These are the general properties sought from the model and typical of edge-tone 
behaviour in a variety of geometrically different configurations. The functional form 
of (8.2) is also in agreement with a range of experiments, as can be seen from figure 
4, which will be discussed in a moment. Another way of presenting (8.2) involves the 
wavelength A, = 2n/lRePI of the sinuous instability mode; using (7.27 b) and (8 .2) ,  we 
have 

An expression of this kind, h/h,  = N + E  for some constant numerical E ,  has been 
widely sought and used in the literature on shear-layer feedback cycles, and E = 4 is 
commonly used on the basis of the classic experiments of Brown (1937a, b) .  It says 

h/h,  = N - i .  (8.3) 
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FIQURE 4. Variation of Strouhal number St = S/n: with stand-off distance h/2b (taken from Holger 
et d. 1977). Symbols indicate measured data taken by experimenters named, and referenced here. 
-, Predictions of theory of Holger et al. (1977) with some degree of parameter adjustment ; 
____  , predictions of present theory (equation (8.2)) for the lowest two modes, no adjustment. 

that the stand-off distance contains an integral number of hydrodynamic 
wavelengths plus an end correction to account for local effects near the jet exit and 
near the splitter-plate edge. However, it is not obvious that the end corrections 
should appear simply as one constant for all N ,  and it is far from obvious that the 
constant, if it exists, is universal. Rather, one would expect it to depend rather 
critically on the detailed geometry of the upstream and downstream bodies, so that 
our prediction E = -: would be expected to differ from what might be found in a 
typical experiment (say, with wedge, and a slit in a large plane wall). There is, indeed, 
considerable scatter in the experimental literature on this point, and our model 
should emphasize the fact that only the form of (8.3) is significant, not the numerical 
value of 8. 

Consider now figure 4 in more detail. This figure, taken from Holger et al. (1977), 
compares experimental data taken by Brown (1937 a, b ) ,  Nyborg (1954), Bracken- 
ridge (1960) and McCartney & Greber (1973) with predictions of a model worked 
out by Holger et al. This model represents the jet as an alternating vortex street, and 
deals in some detail with the interaction of the street with the same splitter plate as 
in this paper. It does not, however, seriously analyse the motion near the jet exit, 
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using instead a simple phase-reversal argument to account for the presence of the 
duct walls and to identify the phase at which the next vortex is added to the street. 
This procedure does not incorporate any end correction for the nozzle exit. Further, 
there are several adjustable parameters in the model of Holger et al. and this restricts 
the extent to which theirs is a rational deductive model. Nonetheless, as figure 4 
shows, that model does lead to rather good agreement with experiment if the 
parameters are suitably chosen, even though it may be less appropriate for flows such 
as that of figure 3, when there is no evidence of any concentrations of vorticity (other 
than in continuous shear layers) upstream of the splitter plate. 

Now figure 4 also shows the predictions of the present theory for N = 1,2, and we 
see that while our theory and that of Holger et al. (1977) agree very closely in the 
functional dependence, they differ significantly in an overall factor. To be precise, the 
theory of Holger et al. gives, in the notation of this paper, 

o b / U ,  = 8.22(b/h)t(N+ E N ) ;  (8.4) 

with slight changes in the eN from one stage to another: el = 0.40, e2 = 0.35, eg = 
0.50. The coefficient 8.22 in (8.4) is much smaller than (47~): x 44.55. Accordingly, the 
main discrepancy between (8.2) and (8.4) is associated with a phase contribution 
Sgh/2b in (8.1) which is much larger than that in the Holger et al. model - and indeed 
much larger than that measured (albeit indirectly). This discrepancy is entirely 
associated with the free amplification and propagation of the sinuous /?-mode, the 
contributions of the end corrections being much smaller, and it brings to light an 
aspect of hydrodynamic stability theory not, apparently, previously noted. 

The discrepancy is equivalent to one between the phase speed c of the sinuous 
mode and the propagation speed V of the vortex street of Holger et al. In the limit 
S-tO, (7.27b) gives 

while (1.20) of Holger et al. gives 
C/U, z 285, (8-5)  

V/U,  = 0.945(S/~)i = 0.64554. (8.6) 

There is no necessary connection between c and V :  indeed, Holger et al. say that any 
correspondence ' may be simply fortuitous since there is no reason why a linear theory 
should correctly predict the properties of a stable configuration in the nonlinear 
range '. Since those words were written, however, considerable evidence has 
accumulated, as mentioned in 9 1, to support the idea that the propagation speed and 
transverse structure of nonlinear modes on jet flows can indeed be quite well 
predicted by linear theory - provided the correct flow profile is used. We have 
modelled the profile in a very special way, and have also used low-frequency 
asymptotics to determine ,!? and c ,  and both simplifications are possible sources of 
error. 

First, consider different velocity profiles in the limit S+O.  In the parallel-flow 
idealization, all profiles U( y )  = U, F( y / 6 )  must conserve not only the momentum flux 
in the jet, 

M = r m p U 2 d y  

but also the volume flux Q = Im Udy 

and if Q and M are given, the values of U, and 6 can be determined, for a given profile 
F ,  in terms of the U,, b for the top-hat jet. Then the results of Drazin & Howard 

-m 

m 
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(1966) for long-wavelength temporal instability can be used, and inverted for spatial 
instability at  low frequency, to predict /3 as a function of w as w + 0. It is found that 
the leading-order behaviour is independent of F, the instability depending only on 
the values of M and &. Higher-order terms (in w )  are similar, but have numerical 
coefficients which differ depending on the profile F. Profile sensitivity is probably not 
very important, therefore. 

The inversion process indicates, however, that while the long-wavelength temporal 
instability results have quite a wide range of applicability, their inverses for spatial 
instability are useful only a t  very low frequencies. Consider, for example, the sinuous 
mode relation (3.19) for temporal instability; then /3 is real and negative, and for 
rBb + 0, 

on the unstable branch. The series for Rew and Imw are essentially geometric, in 
powers of pb,  and the leading terms of each are good for pb 4 1.  Inversion gives, 
however, for spatial instability, 

wb/U,  - (/3b)2+(/3b)3+. . . +i( -pb)$(l  + p b + .  . .) (8 .7)  

p b  - e2~"'3 (wb /U, ) t -~ (wb /Uo)  + . . . (8 .8)  

and the series, of which (7 .27b)  is the first term, proceeds very slowly, with 
comparable real and imaginary parts, in powers of (wb/U,)i .  The first term dominates 
only a t  very low frequencies, and this is why (8 .5 )  leads to such high phase speeds c 
(higher than U,) a t  quite small values of S. A better prediction is obtained by taking 
R e p  from the first two terms in ( 8 . 8 ) ,  and gives 

c 2s: -- N- u, 1 + @ '  

the effect of the denominator being to roughly halve the value of c in (8.5) a t  S = 
0.3 - though higher terms ought probably then also to be included. 

We conclude from this that low-frequency spatial stability asymptotics are valid 
only a t  very low frequencies, and that the principal reason for the discrepancy 
between (8.3) and experiment is associated with the use in (7 .273)  of simply the 
leading-order approximation for p. Much better agreement could presumably be 
reached on the basis of (8 .9 ) ,  or an expression including further terms in Si; all such 
expressions would lead to the same behaviour, namely preservation of essentially the 
form of (8.2), but with (47~): replaced by a smaller coefficient which is actually a 
slowly varying function of frequency. This in turn would imply that an expression 
like (8 .2 )  could be fitted to the calculated results, with a smaller constant coefficient 
than (47~);  but with a number eN replacing the constant (-8 and varying slowly from 
one stage to another. Such a representation was indeed arrived a t  by Holger et al. 
(1977) (see (8 .4 )  above) on the basis of a model with a number of ad hoc assumptions. 
We do not pursue closer agreement with experiment here; the idea of our model is 
to provide analytical insight in simple expressions from clearly defined and rational 
problems. 

9. Displacement thickness waves on the splitter plate 
We consider now the possible significance of displacement thickness fluctuations in 

the boundary layers over the splitter plate. Howe (1981 a, b, c and later papers) has 
written extensively on this topic, and shown that in some configurations these 
fluctuations - with an amplitude determined by the imposition of a leading-edge 
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Kutta condition - can have a strong effect on the flow through a slot or aperture. We 
shall find here a similarly significant effect on the amplitude of the upstream 
feedback forcing field studied in $4, and will indeed find total cancellation of that 
field in a particular limit which is easily interpreted. When that total cancellation 
does not occur, however - and i t  will not in fact occur -we find that the displacement 
thickness fluctuations do not change the phase of the feedback field. There is thus no 
change to the frequencies of the operating stages (on linear theory) which were 
discussed in $8. There is, on the other hand, a very definite change to the structure 
of the acoustic field, as will be discussed in a separate paper. 

The idea is that we add to the antisymmetric (in y )  field of $3 an eigenfunction for 
the splitter plate which is associated with antisymmetric fluctuations of the 
displacement thickness of the boundary layers on the two sides of the plate. Such an 
eigenfunction has the same type of leading-edge singularity as that studied in $3, and 
a leading-edge Kutta condition (Goldstein 1981 ; Howe 1981 a, b, c ;  Crighton 1985) 
can be used to determine the amplitude V of displacement thickness fluctuations. We 
need to assume that the displacement thickness fluctuations (DTF) are of fine scale 
on the scale of the jet width 2b (and hence on the hydrodynamic scale U o / o  of the 
large-scale instability waves), otherwise strong coupling would exist between the 
boundary-layer motion and that of the jet shear layers. This coupling would preclude 
modelling of the DTF via a condition 

a#/ay = -a$/ay = VeeiXX (9.1) 

on y = 0 , O  c X c co (equation (3.16)) with a wavenumber K determined by the 
mechanics of the boundary-layer flow in isolation from the jet flow. 

Suppose then that (9.1) is accepted, as in the numerous papers by Howe, with 
K b  % 1. Then the eigensolution for the splitter plate is obtained by solving 

in -co < X < + c o , y > O ,  with 
VZ# = 0 

# = O  on y = O ,  X < O ,  (9.2) 

equation (9.1) on the splitter plate y = 0 , X  > 0, and with @(X,y) = -#(X,  -y). The 
jet boundaries y = f b have effectively been taken to infinity under the assumption 
K b  %- 1. Standard Wiener-Hopf analysis then leads to 

where y ( k )  = k if Re k > 0, - k if Re k < 0, and r * ( k )  are the Wiener-Hopf factors of 
y ( k )  as identified in (7.17). This solution can be shown to have an X-4 singularity in 
pressure and velocity which cancels that of the solution obtained in $3 if V is 
appropriately chosen. With this choice of V, the upstream feedback field associated 
with DTF, given generally by 

is found to have coefficient 
G(l) = - ( W / K U O )  G ,  (9.5) 

where 
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is the coefficient associated with the upstream feedback field in the absence of DTF 
(see (4.7)). I n  obtaining (9.5), use has been made of the various estimates a t  the close 

The total feedback field is proportional to (1 -o/KU,) and vanishes if K = w/U,,. 
This is easily understood (though not actually permitted in the model, which requires 
KU,/O % 1) when one notes that then the value of a$/ay on y = 0 , X  < 0 and the 
contribution corresponding to C ( k , O )  from (3.11) sum to give (to leading order for 
wb/U,) Q 1) zero normal velocity on the upstream extension of the splitter plate. No 
mode conversion from an incident P-mode in X < 0 to an emergent a-mode in X > 0 
then takes place, and there is no upstream feedback field. There is no suggestion 
that such a cancellation actually takes place, however, and the hypothetical case 
K = w/U,  is noted merely as a point to  check. 

Generally, K will exceed w/Uo .  Howe (1981 b )  considers the case of a boundary layer 
with linearly increasing velocity from 0 to U, over a range S in y, for which Rayleigh 
obtained the dispersion relation for temporally growing waves as 

of $7. 

and for the condition imposed at y = 6 to be transferred as in (9.1) to y = 0 we require 
KS Q 1. Then 

and even if the 9 sign is replaced by >, it is now clear that the imposition of a 
leading-edge Kutta condition makes absolutely no change to the phase relation 
which determines the frequencies of the operating stages. A more significant change 
occurs in the acoustic field, but discussion of that field is deferred to a separate paper. 

10. Discussion 
The main conclusions of this paper have already been set out, in 55 1, 8 and 9, and 

will not be reiterated. Brief comments are in order, however, on one or two aspects 
of the work. 

First, the notion of causality was raised in $3. A causal solution to a time-harmonic 
steady-state problem is analytic in frequency in the upper half-plane Im w > 0. Now 
in Wiener-Hopf problems such as those of $93 and 5, solutions are found as integrals 
along the real axis of wavenumber space using certain analyticity requirements in k- 
space in relation to upper and lower half-planes Im k 3 0 (strictly speaking a strip of 
overlap is needed, but that is irrelevant to  the present point). When w varies in Im 
o > 0, however, poles in k-space do not necessarily remain on the same side of the real 
k-axis, and indeed those representing spatial instability waves cross from one half- 
plane to the other. Analyticity in w can then only be preserved by deformation of the 
integration path in k-space to  prevent this, the upper and lower halves of k-space 
then lying above and below this deformed contour, respectively. This was first 
explained in relation to  the interaction between a vortex sheet and a rigid plate, with 
external acoustic forcing, by Crighton & Leppington (1974) and Morgan (1974). The 
deformation procedure implies, for example, that in the factorization of (T+ 1)2 +S 
in (7.18), both factors should be included in the ‘minus’ function and the lower half- 
plane regarded as including the point 7 = - 1 + is;. A spatially bounded solution is 
then sought with this interpretation of ‘upper’ and ‘lower’ and found as an integral 
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along the deformed path. This integral may in turn be written as one along the real 
k-axis plus a residue term from the pole (at T = - 1 +iSi in the example quoted) 
which is exponentially growing in space. Such a procedure automatically generates 
the appropriate spatial instabilities, and could have been used here. In  $3 there 
would have been no ‘forcing’ and the primary terms in (3.5) would not have been 
initially separated out, but would have been produced as residues in the way just 
mentioned (for the varicose wave). In $ 5  the transverse forcing would have been 
retained but the allocation of factors to different split functions would have led to 
two possibilities for the Wiener-Hopf entire function. One would have given zero 
residue and a field bounded at  x = + 00 - the field of $ 5 in fact. The other would have 
ensured satisfaction of the Kutta condition, and then the residue contribution would 
have given a residue field corresponding precisely to the eigensolution (5.18) with the 
correct choice of A,, namely that of (6.1). A similar discussion is given in relation to 
a leading-edge problem by Goldstein (1981). We emphasize, therefore, that the 
solutions obtained here comply with the causality principle, but the exponential 
growth in x has been extracted a t  the outset, in (3.5) and (5.18), rather than produced 
by contour deformations accounting for causality. 

Examination of causality issues fails, however, to resolve a somewhat un- 
satisfactory aspect of the leading-edge splitter-plate problem studied in $ 3. We noted 
there that the solution, expressed in the form (3.17) appropriate to X < 0, has a pole 
contribution at k = a corresponding to the varicose mode, one at  k = /3 for the 
sinuous mode (giving (3.23)), and a branch-line contribution studied in $4. Now it 
becomes apparent, from the low-frequency approximation (7.9) to the sinuous mode 
dispersion functionM(k), that there is in (3.17) a further pole contribution which will 
appear for X < 0 (and for some range of Y = y - b certainly including Y = 0), namely 
that from the pole at  q = eh’, or 

k = -/3* = (w/U0)S-4{++ii1/3} (10.1) 

(cf. (7.15)). The mode to which this gives rise is, in a sense, perfectly acceptable for 
X < 0 ; it is identical to (3.23) with /3 replaced by -/3*, and thus decays as X - t  - 00 

at the same rate as the ‘sinuous mode’ (3.23). It has Re k equal and opposite to that 
of the sinuous mode, however, so that as X increases from large negative values the 
mode given by (10.1) grows in space in precisely the same way as the genuine sinuous 
instability wave, but ‘propagates ’ towards X = - m rather than X = + 00. Such a 
curious ‘ backward-propagating spatial instability ’ could not appear in X > 0, of 
course. Indeed, Hardisty (1974) has proved that the rectangular jet at  low Mach 
number (as here) has precisely two spatial instability modes at each w ,  one varicose 
and one sinuous. The corresponding wavenumbers k = a and k = /3 cross the real axis 
from below to their final positions (7.14) and (7.15), respectively, as w moves from a 
position high up in Im w > 0 down to the real value of ultimate interest. Such modes 
propagate to X = + 00 and will in general appear downstream of any excitation or 
inhomogeneity ; the /3-mode does not occur in the splitter-plate problem because it 
cannot satisfy the condition on y = 0. 

The field corresponding to (10.1) thus causes no difficulties at all for X > 0, where 
it never appears. To interpret its appearance for X < 0 one simply has to assert that 
while k = /3 gives rise to an ‘incident ’ sinuous mode (3.23), k = -/3* gives rise to a 
‘reflected ’ sinuous mode. The reflected mode propagates towards X = - 00, the 
incident away from X = - 00 ; both decrease towards X = - 00 at the same rate. Both 
have to be distinguished by their physical structure from the feedback field, 
represented by the branch-line integral, which is much less small as X + - 00. Making 
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that distinction on physical grounds, rather than mathematical, is a familiar point ; 
see the discussion in Crighton (1981, p. 282) of Goldstein (1981), and observe also that 
Goldstein takes no account of the reflected /3 mode in his analysis of a leading-edge 
splitter-plate problem with external acoustic (or gust) forcing. How the distinction 
can justifiably be made mathematically is a point needing further investigation - as 
also are the physical features associated with nonlinear shear-layer dynamics and the 
acoustic field of the jet edge-tone device. These topics will be taken up in future work, 
but a remark is in order on nonlinearity of the shear-layer motions. Until recently, 
nonlinear effects in free-shear layers appeared to be destabilizing (Huerre 1980), so 
that a suitably normalized (real) amplitude a would evolve in space according to an 
equation of the form 

Such an equation could not lead to the kind of finite-amplitude periodic limit cycle 
behaviour that is often thought to underlie edge-tone operation (see, for example, 
Blake & Powell 1986; Karamcheti et al. 1969; Nyborg 1954). Huerre (1987) and 
Churilov 6 Shukhman (1987) have, however, now discovered a further contribution 
to the Landau constant p in (10.2) which is large, and of the opposite sign, implying 
that nonlinear effects are strongly stabilizing. Thus the correct amplitude equation 
reads 

da/ds = U ( U ~  -a2), (10.3) 

and a asymptotes to a, in a limit cycle. The extension of these ideas to a jet flow, 
rather than a single free shear layer, and their combination with the linear 
calculations presented here for the interactions with upstream and downstream 
boundaries, should provide a nonlinear theory to predict the amplitude and 
frequency of the edge-tone stages. 

da/dx = a+pa3, ,U > 0. (10.2) 
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